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Abstract: The paper presents aspects regarding examples of solving problems of 
statics of rigid bodies, by application of concurrency condition of three lines in a plane. The 
examples considered for problems of rigid body equilibrium subject to contact without friction, 
have been first solved by mechanical considerations, and then, reducing the mechanical 
problems, they have been solved by geometrical considerations, namely, the problem of 
concurrency condition of three lines in a plane. 
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1. INTRODUCTION 
 
In classical mechanics, the state of equilibrium of a material body can be 

defined from static or dynamic point of view, both being forms of mechanical 
equilibrium. 

Statics as a division of theoretical mechanics, studies the equilibrium 
conditions of material systems under the action of applied forces, ignoring motion. The 
static equilibrium of a material body is characterized by the lack of mechanical motion, 
that is, there is no modification of its position in time. As opposed to mechanical 
movement, static equilibrium is equivalent to the state of repose. The state of repose, as 
well as the state of motion, can be absolute or relative, depending on the reference 
benchmark. It is recommended for the statics to be approached deductively, starting 
from the simplest mechanical model (material point), and ending with the system of 
bodies – the mechanical model of the greatest complexity. 
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From the point of view of the models of classical mechanics, statistics has two 
divisions: statistics of the material point and statistics of the solid rigid body, which 
extends in the case of body systems as well. 

Three categories of problems generally occur in statistics, which differ 
especially by the model of mathematical solving: 

a) direct problem, in which the position of equilibrium of the material system 
in study is supposed to be known, and in the case of its solving, determination of the 
forces under the action of which the balance is carried out is followed; 

b) reverse problem, residing in determining the equilibrium position of the 
material system analyzed, when the forces acting on it are known; 

c) mixed problem, aiming at finding all the unknown elements that refer both 
to the equilibrium position, and to the forces concurring to it being carried out, when 
information is known both regarding the equilibrium position, and the forces. 

We shall further consider examples of problems of equilibrium of the rigid 
body, in which the equilibrium position is asked to be found. Concepts of mechanics 
and geometry are used in solving. The problems in study are considered in a plane and 
refer to the equilibrium of the rigid body subject to connections without friction. 
 

2. EXAMPLES OF SOLVING FROM A MECHANICAL POINT OF 
VIEW 
 
In theoretical (classical) mechanics, the rigid solid body represents a 

simplifying theoretical model, specific to this, by which one means a material body in 
which the distance between two of its points is an (the distance between them is not 
modified, that is, the solid body is not distorted), irrespective of the magnitudes of the 
applied forces. Material bodies are not generally found in a free state, they are subject 
to connections (forms of positioning in space that impose certain restrictions of a 
geometric order). 

As in the case of material points, for the study of the rigid body equilibrium, 
subject to connections, the connections axiom is used, based on which the connection 
is suppressed and replaced with corresponding mechanical elements (forces or 
moments). After all the connections to which a solid rigid body is submitted are 
suppressed, the following act on it: exterior forces and moments, directly applied; 
connection forces and moments. 

While the reduction torsor in a point O (origin of the reference system) of 
exterior forces is τO( R , OM ), the reduction torsor in O of the connection forces is: 
τ'O( R ', 'OM ). In this case, the vectorial equilibrium conditions will be: 
 

' 0, ' 0O OR R M M+ = + = ,                                             (1) 
 

These two vectorial equations are equivalent to those scalars of equilibrium 
(2), valid when: 

; ' ' ' 'R X i Y j Z k R X i Y j Z k= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ ; 
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; ' ' ' 'O Ox Oy Oz O Ox Oy OzM M i M j M k M M i M j M k= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅  
 

 
' 0, ' 0, ' 0

' 0, ' 0, ' 0Ox Ox Oy Oy Oz Oz

X X Y Y Z Z
M M M M M M
+ = + = + =
+ = + = + =

,                    (2) 

 
The calculation algorithm of the reactions is the following: 
- the connections of the solid rigid body are suppressed and, in their place, the 

corresponding reactions are entered. The sense of these reactions is chosen in such a 
manner, so that in the scalar equilibrium equations, the scalars of the reactions would 
appear positive: 

- a suitable reference system is chosen according to which the static scalar 
equilibrium equations are written and solved. When from the calculation, the 
magnitude of a reaction appears positive, that means that the chosen sense is the real 
one. Otherwise, the respective reaction will have the opposite sense of the initial one.  

Momentum equations are written as a rule in relation to the connection which 
introduces the greatest number of reactions. 

 
Example 1. 
A 2l long homogeneous AB bar of G weight stays with its ends on two inclined 

planes, of α, respectively β angles in relation to the horizontal plane (Fig. 1). The 
contact is without friction. Determine angle φ of the bar with the horizontal plane, for 
the resting position, as well as the reactions. 

Solving. 
The bar is freed from connections, introducing the corresponding reactions in 

supports A and B, then the scalar equations are 
written in relation to the reference system 
chosen in the figure. 
 

( )

sin sin 0
cos cos 0

2 cos cos 0

A B

A B

B A

X N N
Y N G N
M N l Gl

α β
α β

α ϕ ϕ

≡ − =
≡ − + =

≡ − + + =

,   (3) 

 
Moving on to solving the system (3), 

we get: 
 

Fig. 1. The bar on the inclined planes 

( )

( ) ( )

sin
sin

sin sincos cos sin
sin sin

sin 12 cos cos sin sin cos 0
sin cos

B A

A A A

N N

N N G N G

G l Gl
Gl

α
β

α βα β β
β α β

β α ϕ α ϕ ϕ
α β ϕ

=

+ = ⋅ ⇒ =
+

− − + = ⇒
+
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( )
( )

( )

( )
2sin cos sin

sin sin
2sin sin 2sin sin
sin

tg

β α α β
α β β α

ϕ
α β α β
α β

− +
+ −

⇒ = =

+

 

And the reaction in B has the value: 

( )
sin

sinBN G α
α β

=
+

, 

 
Example 2. 
An ABCD board, homogeneous, of G weight, is suspended by a line, fixed in 
point E to a vertical wall, the A peak of the 

board resting on the vertical plane as well, (Fig. 2). 
Knowing that AB=BC = BE =a, determine the 

resting position given by α angle, as well as the 
connecting forces. Friction is ignored. 

Solving. 
The board being freed from connections, and 

choosing the reference system as in the figure, the 
following scalar equilibrium equations are obtained: 
 

sin 0
cos 0

2sin 2 cos 0
2 4

A

A

X N S
Y S G

M Sa Ga

α
α

πα α

≡ − =
≡ − =

 ≡ − − = 
 

,   (4) 

 
The calculations are made, obtaining: 

 

 
Fig. 2. Homogeneous board 

sin 0
sin
coscos

cos
2 1sin 2 cos 0

cos 2 4

2sin cos 2 2 2 1cos sin 0
cos 2 2 2 cos

1 12 0 2 4 1 0
2 2
1 1
3 3

A

A

N S
N G GtgGS G S

G a Ga
Ga

tg tg tg tg

tg respectiv arctg

α
α α
αα

α
πα α

α

α α α α
α α

α α α α

α α

= = 
 = =

= ⇒ = 

 − − = ⋅ ⇒ 
 

 
⇒ − + = ⇒  

 

⇒ − − = ⋅ ⇒ − − =

⇒ = =

, 
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Whence, with 1
3

tgα =  the tension in the line is: 

2
2 1 1 10sec 1 1 1

cos 3 9 3
GS G G tg G G Gα α
α

 = = = + = + = + = 
 

, 

And the reaction of the vertical wall is: 
1
3AN Gtg Gα= = . 

 
Example 3. 
A homogeneous AB bar of G weight and 2l long is placed inside a hemisphere 

of a radius (fig. 3). Determine the θ angle of the bar with the horizontal, in its resting 
position, as well as the reactions, in supports A and D. 

Solving. 
The bar is released from the 

connections, by introducing reactions in 
supports A and D. Choosing the xOy 
reference system, the scalar equations of 
equilibrium are: 
 

cos 2 sin 0
sin 2 cos 0

2 cos cos 0

A D

A D

A D

X N N
Y N N G
M N a Gl

θ θ
θ θ

θ θ

≡ − =
≡ + − =
≡ − =

,   (5) 

 
Next we have: 

 
Fig. 3. The bar inside the sphere 

( )

( )

( )

cos 2 sin 0 cos

sin 2 cos 0 sin

cos 2 cos sin cos 0
sin 2 sin sin cos sin

cos 2 cos sin 2 sin sin
sincos 2 sin
cos

cos 2 sin cos 2
sin cos

A D

A D

A D

A D

A

A A

D A

N N

N N G

N N
N N G

N G

N G N G Gtg

N N G

θ θ θ

θ θ θ

θ θ θ θ
θ θ θ θ θ

θ θ θ θ θ
θθ θ θ θ
θ

θ θ
θ θ

− = ⋅  ⇒
+ − = ⋅ 

− = 
⇒ + ⇒+ = 
⇒ + = ⇒

⇒ − = ⇒ = =

= = ⋅

( )2

cos 2
sin cos

cos 2 2 cos cos 0 2 cos 2 cos 0
cos

2 2cos 1 cos 0

G

G a Gl a l

a l

θ θ
θ θ

θ θ θ θ θ
θ

θ θ

=

− = ⇒ − = ⇒

⇒ − − = ⇒
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2 2
2 324 cos cos 2 0 cos

8
l l aa l a

a
θ θ θ ± +

⇒ − − = ⇒ =  

For 
2 232cos
8

l l a
a

θ ± +
=  only the root corresponding to the sign „+" is 

valid. 
The equilibrium is possible for cos 1θ ≤ : 

2 232
8

l l a
a

+ + , 

whence, making the calculations, condition 2l a≤  results, thus the C center of gravity 
of the bar should be at the left of point D. 

The reactions are: 

, ( 0, (5))
2A D A
lN Gtg N G from M the system
a

θ= = = , 
 

Example 4. 
The AB homogeneous bar, of G weight and 2l long leans in A against a vertical 

wall, and in D against the edge of another wall, located at distance a from the first one 
(Fig. 4). The contact is without friction. Determine the angle θ of the bar with the 
horizontal plane in its resting position, similarly the reactions in supports A and D. 

Solving. 
The bar is released from connections, by introducing reactions in supports A 

and D, each reaction having as normal direction at the surface which does not have 
singular point in the contact point. 
In order to obtain projection equations as 

simple as possible, the xAy reference system is 
chosen, so that as many as possible forces would 
be projected in real size. 

Scalar equilibrium equations are: 
 

sin 0
cos 0

cos 0
cos

A D

D

A D

X N N
Y N G

aM N Gl

θ
θ

θ
θ

≡ − =
≡ − =

≡ − =

,   (6) 

 

 
Fig. 4. Homogeneous bar 

We move to the solving of the system (6): 

2
3 3

sin 0
sin
coscos 0

cos
coscos 0 cos cos

cos cos

A D

A
D D

N N
N G GtgGN G N

G a a aGl
G l l

θ
θ θ
θθ

θ
θθ θ θ

θ θ

− = 
 ⇒ = =

− = ⇒ = 

⋅ − = ⋅ ⇒ = ⇒ =
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For the equilibrium to be possible: 

3 1,a deci a l
l
≤ ≤ , 

Reactions: 
2
3

31,A D
l lN G N G
a a

 = − = 
 

 

In the applications presented, the angles made by rigid bodies at rest have been 
determined by mechanical considerations. In the following, the angles will be 
determined reducing the problem of mechanics to the problem of concurrency 
condition of three lines in a plane. 
 

3. CONCURRENCY CONDITION OF THREE LINES IN A PLANE 
 

Out of the principal methods of demonstrating concurrency of minimum three 
lines in a plane, we mention the following: 

1) using the definition of concurrent lines: for lines a, b, c it is demonstrated 
that a ∩ b = {P} , a ∩ c = {Q} and that P = Q or, analogously, it is demonstrated that  
a ∩ b = {P} and that P ∈ c.In the applications presented, the determination of the 
angles made by rigid bodies at rest were determined by mechanical considerations. In 
the following angles will be determined by reducing the mechanical problem to the 
problem of the condition of competition of three straight lines in the plane. 

2) using the collinearity of certain points: for lines a, b, c it is demonstrated 
that a ∩ b = {P} and �either Q, R ∈ c. If  P, Q, R are colinear, then  a, b, c are 
concurrent in P. 

3) using the converse of Ceva theorem. 
4) using the concurrency of important lines in a triangle: we identify a triangle 

where the given lines become medians, or bisectors, or heights or mediators. 
5) analytical method. 
6) vectorial method. 
7) using the converse of Carnot theorem. 
To determine the angles in the case of rigid bodies taken as example, in the 

following, we consider that the support lines of 
the forces (directly applied and of connection) 
acting on the rigid body, should be concurrent. 
The equations of the support lines will be 
explained as the equation of line determined by 
appoint and a direction (given slope). 

We thus have for example 1 (Fig. 1), the 
equations of these lines (Fig. 5): 
 

( ) :Au y xctgα= ,                    (7) 
 

 
Fig. 5. Support lines, example 1 
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( ) ( ): 2 sin 2 cosBv y l ctg x lϕ β ϕ− = − − ,                                     (8) 

( ) : cosCz x l ϕ= ,                                                     (9) 
 

We stipulate that the three lines would be concurrent. 
We remove y from the first equations: 

 

( )2 sin 2 cosxctg l ctg x lα ϕ β ϕ− = − − ,                                (10) 
 

We substitute (10) in x with its value of (9), and we get the condition that is 
looked for.: 
 

( )2sin cos 2cosctg ctg ctgϕ α ϕ β ϕ ϕ⋅ − = − − ,                         (11) 
 
or: 

( )sin
2

2 2sin sin
ctg ctgctg tg ctg tg

β αα βα ϕ β ϕ
α β
−−

− = ⇒ = = ,            (12) 

 
For example 2 (Fig. 2) the equations of the lines (Fig. 6) are: 

 

( ) : 0Au y = ,                                                          (13) 
 

( ) ( ) ( )
( )

0: cos 90 sin

sin cos

Bv y l tg x l

y x l ctg l

α α α

α α α

− = − + − ⇒

⇒ = − − +
                             (14) 

 

( ) 2: cos
2 4

lOz x π α = − 
 

,        (15) 

 
We stipulate the condition that the three lines 

are concurrent. 
We remove y from the first equations, and 

making the calculations: 
 

( )

( )

sin cos

1sin cos
cos

2 sin
sin

x l ctg l

x l ctg l

x l l x l

α α α

α α α
α

α
α

− − = − ⇒

⇒ − = ⋅

⇒ − = ⇒ =

,   (16) 

 
We substitute (16) pe x with its value in (15), 

and we get the condition looked for: 

 
Fig. 6. The board, example 2 
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( )

( )

22 sin cos cos sin sin
2 2 2

2 22sin cos sin
2 2

12sin cos sin 2 4sin cos sin
2

13sin cos 3 1
3

l l

tg tg

π πα α α

α α α

α α α α α α

α α α α

 = + ⇒ 
 

⇒ = ⋅ + ⇒

⇒ = + ⋅ ⇒ = + ⇒

⇒ = ⇒ = ⇒ =

,        (17) 

 
For example 3 (Fig. 3), the equations of the lines (Fig. 7) are: 

 

( ) : 2Au y xtg θ= ,            (18) 
 

( ) ( ):Dv y x a ctgθ= − − ,       (19) 
 

( ) : cos cos 2Cz x l aθ θ= − ,     (20) 
 

We stipulate that the three lines are 
concurrent. 

We remove y from the first 
equation, making the calculations: 

 
Fig. 7. The bar from example 3 

 

( ) ( )2 2xtg x a ctg sau x tg ctg actgθ θ θ θ θ= − − + = ,                    (21) 
 

Substituting x with its equation from (20), we get: 
 

2cos cos 2 2 cos cos 0l a sau a l aθ θ θ θ= − − = ,                      (22) 
 

It results: 
 

2 2
2 232cos , 32 8 2

8
l l a de unde l l a a l a

a
θ + +
= + + ⇒  ,            (23) 

 
For example 4 (fig. 4) the equations of the lines (Fig. 8) are: 

 

( ) : 0Ax y = ,                                                      (24) 
 

( ) ( ) ( ) ( )0: 90Du y atg tg x a y x a ctg atgθ θ θ θ− = + − ⇒ = − − + ,      (25) 
 

( ) : cosCz x l θ= ,                                                 (26) 
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We stipulate that these lines are concurrent. 
We remove y from the first equations and the following calculations are made: 

 

( ) ( )x a ctg atg sau x a ctg atg
tg ctgx a

ctg

θ θ θ θ
θ θ

θ

− − + − = ⇒

+
⇒ =

,                   (27) 

 
We substitute x with its equation of (26), and we get: 

 

2 2 2

2 3

3

cos

cos sin coscos
sin cos sin

cos sin cos sin
sin sin cos

cos cos
cos

cos

tg ctgl a
ctg

l a

l a

a al
l

a
l

θ θθ
θ

θ θ θθ
θ θ θ

θ θ θ θ
θ θ θ

θ θ
θ

θ

+
= ⇒

 ⇒ = + ⇒ 
 
+

⇒ = ⋅

⇒ = ⇒ = ⇒

⇒ =

,     (28) 

 
Fig. 8. The bar for example 4 

 
4. CONCLUSIONS 

 
The paper presents aspects regarding certain examples pf solving problems of 

statics of rigid bodies, by applying concurrency condition of three lines in a plane.   As 
examples, problems of rigid bodies equilibrium have been considered, subject to 
connections without friction, first solved by mechanical considerations, and then, 
reducing the problems of mechanics, by geometrical considerations. By the problem of 
concurrency condition of three lines, angles have been determined, in the case of the 
rigid body equilibrium position, subject to connections. To be noticed that the direct 
applied forces and of connection, should be together a number of three, in order to be 
able to apply the condition of concurrency of three lines in a plane. 
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